
1INSTITUT PIERRE-SIMON LAPLACE 1

Sébastien Gardoll
May - 2023

STORAGE FORMATS

ESPRI-IAESPRI-IA

2INSTITUT PIERRE-SIMON LAPLACE 2

Facilitating advanced AI adoption within IPSL laboratories
MissionESPRI-IA

Assistance in the form of:

■ Engineering, methodological and technical consulting
■ Relay of training events
■ Technology watch

Regarding:

■ Machine Learning in general and Deep Learning in particular
■ Data engineering
■ Computing facilities
■ Software engineering
■ Parallel and distributed computing

Contact: https://tinyurl.com/slack-espri-ia
Website: https://espri.ipsl.fr/services/artificial-intelligence-support/

Abonnement newsletter webinaire : https://tinyurl.com/newsletter-espri-ia

3INSTITUT PIERRE-SIMON LAPLACE 3

Storage formats
Use case

ESPRI-IA

4INSTITUT PIERRE-SIMON LAPLACE 4

Requirements
Use case 1/2ESPRI-IA

Very large training dataset in Deep Learning (DL):
● Dataset can be too big to be loaded in the RAM/VRAM of a node.
● Costly online data extraction make us to create training dataset.
● Numeric, float32 or float64 multidimensional matrices.
● Training dataset is read multiple time during training (epoch).
● Looking for a storage format that:

○ Provides random read of chunks (e.g. images) of the training dataset.
○ Otherwise sequentially read randomly selected partitions of pre-randomized chunks (but less

entropy).
Common:
● Dataset size quota & data ingress ⇒ eventually compress data.
● File number quota ⇒ eventually concatenate files (e.g. tar file).
● Minimization of read/write time (IO overhead).

5INSTITUT PIERRE-SIMON LAPLACE 5

Abstraction
Use cases 2/2ESPRI-IA

The chunks by chunks case, read/write chunks of dataset:
○ Sequentially
○ Randomly ⇔ Most frequent case in Deep Learning

⇒ File based chunking: 1 chunk = 1 file. But files may be concatenated into one file with tar or zip,
seamlessly!

Example: in computer vision Deep Learning, a chunk is an image and each image is a file.

The partitions by partitions case, read/write partitions of chunks of dataset, then iterate chunks:
○ Sequentially
○ Randomly

⇒ 1 Partition = 1 file ⇒ storage format provides chunk access within the partition.

e.g. In climate modelling, a chunk can be a grid of values of a physical variable at a specified time step.
The grids are grouped according to days, months or years. Example ERA5, each file contains one month of
gridded values of a variable.

6INSTITUT PIERRE-SIMON LAPLACE 6

Simplified overview
Storage formats in Python 1/2ESPRI-IA

Multidimensional and self descriptive low level storage formats for numerical data in Python:
● Numpy
● HDF5
● Zarr
● Parquet (does imply JVM serialization ?)
● Tiff
● Etc.

Frameworks supporting geospatial features (date, geolocalization, variable level, etc.):
● NetCDF4: NetCDF4 ⇒ HDF5
● Xarray: NetCDF4 over HDF5
● Xarray: NetCDF over Zarr
● NCZarr: NetCDF4.8 over Zarr
● Geotiff
● Etc.

Databases supporting geospatial features:
● postGIS over postgreSQL
● Etc.

compatibility ?

studied

7INSTITUT PIERRE-SIMON LAPLACE 7

Storage formats
HDF5, Numpy and Zarr

ESPRI-IA

8INSTITUT PIERRE-SIMON LAPLACE 8

Abstraction levels are not equivalent
Data selectionESPRI-IA

HDF5 and Numpy are at file level. The selection data ⇔ selection of files is left up to you (based on directory
path and file name).

Selection of data:
● Selection of files in FS (compute paths and file names)
● Open the files
● Selection of data within these fileS (slicing and eventually concatenation)
● Close the files

Zarr is at dataset level, data can be stored in directories, zip file, MongoDB, Redis, N5, HadoopFS, Amazon S3,
etc. Data storage is abstracted. For example, no more struggle when the selection is straddling two files!

Selection of data:
● Open the dataset (load just the metadata)
● Slicing an array like Numpy (orthogonal slicing is supported): load in RAM only the chunks containing

the selected data.

Data store:
● Zarr-dir: Zarr with directory as data storage.
● Zarr-zip: Zarr with a zip file as data storage.

9INSTITUT PIERRE-SIMON LAPLACE 9

Different approaches
ChunkingESPRI-IA

Concepts:
● File based chunking: 1 chunk = 1 file. The whole file is loaded into RAM.
● Chunking within file or N chunks grouped into 1 file. Only the part of the

file that corresponds to the chunk is loaded into RAM.

Numpy:
● File based chunking is straight forward. Chunk/file selection is left up to you.
● Chunking within file is possible with mmap but low level (byte offset management left up to you).

HDF5:
● File based chunking is straight forward. Chunk/file selection is left up to you.
● Chunking within file: offsetted sequential read of chunks is supported but random read.

Zarr:
● Is designed on file based chunking.
● Provided indexed array like Numpy ⇒ Random read made easy

from Unidata

Chunk shape is critical for
IO performances: they
must fit to all applications!

10INSTITUT PIERRE-SIMON LAPLACE 10

Features
Storage formats in Python 2/2ESPRI-IA

Container Compression Concatenation Chunking Concurrent chunk
write

Embedded
metadata

Cloud
stores

Numpy ✓ with third
parties

✓ with Tar but
loose random

read

✓ complicated
with mmap

✓ different
chunks/files

❌ same chunk/file
❌ ❌

HDF5 ✓ std & third
parties

✓ with Tar but
loose random

read

✓ sequential
read

❌ random read

✓ different
chunks/files

❌ same chunk/file
✓ ❌

Zarr ✓ with third
parties ✓ with zipstore ✓ file based

✓ different
chunks/files

❌ same chunk/file
✓ ✓

11INSTITUT PIERRE-SIMON LAPLACE 11

Storage formats
Experiments

ESPRI-IA

12INSTITUT PIERRE-SIMON LAPLACE 12

Dataset
Method 1/2ESPRI-IA

● Dataset size: 8268.86 MBytes. Sequential online extraction: 59 s vs loading: 15.8 s
● Chunks:

○ 896, around 9.22 MBytes/chunk.
○ Chunk: stack of 3 matrices 560x1440 of float 32 bits, from ERA5:

■ Mean Sea Level pressure: 101020.42 ± 1224.54 Pa
■ Total Column Water Vapor: 22.98 ± 5.66 kg/m²
■ U component wind speed at 10 meter above the sea: 0.14 ± 5.66 m/s

● This dataset is big enough to be a partition of a dataset ⇒ The same dataset can be used for
chunks by chunks or partitions by partitions experiments.

● Dataset is build using Numpy ndarray: most frequent cases ⇒ Keep in mind that Numpy, as a
storage format, is favored in this study!

13INSTITUT PIERRE-SIMON LAPLACE 13

Experimental protocol
Method 2/2ESPRI-IA

● The experiments are performed on the same hardware (spiritx48-2).
● Read/write on local file system: prevent network overhead and concurrency (/tmp).
● Read/write on SSD: most frequent case in Deep Learning (HAL and Jean Zay) ; HDD has lower

access time and getting worst when random read (i.e. blocks, sectors and platters).
● Blocks of files in Linux cache are systematically evicted before and after reads or writes

(command vmtouch).
● Every experiment is performed 3 times, only means are considered.
● Experiment is redone if its RSD > 5% (5% rsd ⇔ std = 50 ms for 1 second elapsed time experiment).
● All the chunks of the dataset is read, sequentially or randomly.

14INSTITUT PIERRE-SIMON LAPLACE 14

Only lossless ones
Compression codecsESPRI-IA

● Lossless compression codecs are general-purpose compression algorithm, expert configuration is
not necessary as opposed to lossy codecs (fixed scale offset, quantize, bitround, latent space, etc.)
which may have better performances. Jpeg and png are lossy image formats and are not
general-purpose and/or deal with integers.

● Studied codecs: lzma (xz), gzip, bz2, zlib, zstd, lz4, lz4hc.
● Blosc version: blosc-bloscLZ (FastLZ), blosc-lz4, blosc-lz4hc, blosc-zlib, blosc-zstd.
● Extra codecs for HDF5: sz, sz3, lzf, blosc2 (blosclz, lz4, lz4hc, zlib, zstd).
● Codecs for HDF5 are from package hdf5plugins (Fortran compliance?).
● Codecs for Numpy and Zarr are from package numcodecs (Fortran compliance?).

15INSTITUT PIERRE-SIMON LAPLACE 15

Meta-compressor
BloscESPRI-IA

● Blosc is not a compression codec:
○ Wrapps an compression codec and speeds up transmission of data to the CPU.
○ Leverages SIMD (SSE2) and multi-threading capabilities present in recent multi-core

processors.
○ Chunks data (again!) to fit the size of the CPU caches so as to fight CPU starvation (waiting

too long for data).
● Blosc is production ready!
● Blosc is available for C & Python (wrapper). Any Fortran library? Fortran through C library ?
● More informations at https://www.blosc.org/

16INSTITUT PIERRE-SIMON LAPLACE 16

Storage formats
Results

ESPRI-IA

17INSTITUT PIERRE-SIMON LAPLACE 17

Sequential read
Blosc superiority 1/3ESPRI-IA

Uncompressed numpy

Blosc codecs that have sequential read faster than
uncompressed numpy!

1 ⇔ 1×15.8 sec
2 ⇔ 2×15.8 sec
etc.

1 ⇔ 8268.86÷1 MBytes
1.25 ⇔ 8268.86÷1.25 MBytes
etc.

18INSTITUT PIERRE-SIMON LAPLACE 18

Random read
Blosc superiority 2/3ESPRI-IA

Uncompressed numpy

Blosc codecs that have random read faster than
uncompressed numpy!

1 ⇔ 1×15.8 sec
2 ⇔ 2×15.8 sec
etc.

1 ⇔ 8268.86÷1 MBytes
1.25 ⇔ 8268.86÷1.25 MBytes
etc.

19INSTITUT PIERRE-SIMON LAPLACE 19

Sequential write
Blosc superiority 3/3ESPRI-IA

Uncompressed numpy

Blosc codecs that perform better than codecs without
blosc!

1 ⇔ 8268.86÷1 MBytes
1.25 ⇔ 8268.86÷1.25 MBytes
etc.

1 ⇔ 1×2.45 sec
2 ⇔ 2×2.45 sec
etc.

20INSTITUT PIERRE-SIMON LAPLACE 20

Overview
Size ratios 1/2ESPRI-IA

Uncompressed numpy

21INSTITUT PIERRE-SIMON LAPLACE 21

Selected codecs
Size ratios 2/2ESPRI-IA

● blosc-zstd > blosc-lz4hc > blosc-bloscLZ ≈ blosc-lz4
● lz4 has acceleration level not compression

22INSTITUT PIERRE-SIMON LAPLACE 22

Random read
Chunks by chunks 1/4ESPRI-IA

Uncompressed
numpy

Best: numpy

2nd Best: zarr-dir

● blosc-lz4 > blosc-blosclz > blosc-zstd
● numpy > zarr-dir > zarr-zip ≈ hdf5

23INSTITUT PIERRE-SIMON LAPLACE 23

Random read without write performance
Chunks by chunks 2/4ESPRI-IA

Best: numpy

2nd Best: numpy &
hdf5 & zarr-dir

● blosc-lz4hc > blosc-zstd >< blosc-lz4
● numpy > hdf5 ≈ zarr-dir > zarr-zip

Uncompressed
numpy

24INSTITUT PIERRE-SIMON LAPLACE 24

Uncompressed
numpy

Random read
Partitions by partitions 1/2ESPRI-IA

● lz4 & blosc-* impossible (buffer < 2 GBytes)
● blosc-lz4 > blosc-blosclz > blosc-zstd
● zarr-dir > zarr-zip

Best: zarr-dir

2nd Best: zarr-dir & zarr-zip

25INSTITUT PIERRE-SIMON LAPLACE 25

Random read without write performance
Partitions by partitions 2/2ESPRI-IA

● lz4 & blosc-* impossible with numpy (buffer < 2 GBytes)
● blosc-lz4hc > blosc-zstd > blosc-lz4
● zarr-dir > zarr-zip ≈ hdf5

Best: zarr-dir

2nd Best: zarr & hdf5Uncompressed
numpy

26INSTITUT PIERRE-SIMON LAPLACE 26

Sequential read
Chunks by chunks 3/4ESPRI-IA

Best: numpy
2nd Best: numpy & tar

Uncompressed
numpy

● blosc-lz4 > blosc-blosclz > blosc-zstd
● numpy > tar > zarr-dir

27INSTITUT PIERRE-SIMON LAPLACE 27

Sequential read without write performance
Chunks by chunks 4/4ESPRI-IA

Best: numpy

Uncompressed
numpy

2nd Best: numpy & hdf5 &
tar

● blosc-lz4hc > blosc-zstd > blosc-lz4
● numpy > tar > hdf5

28INSTITUT PIERRE-SIMON LAPLACE 28

For large training dataset in Deep Learning
ConclusionsESPRI-IA

● Compression codecs
○ Decompression elapsed time is not related to compression elapsed time.
○ LZMA and bz2 are not suitable for scientific computations.
○ Alway wrap your compression codec with blosc: loading compressed data is faster than

loading uncompressed data!
○ Blosc-lz4 seems to be best compromise: default codec for Zarr for good reasons.
○ Blosc-lz4hc is the best option if write overhead doesn't matter so much.
○ Blosc-lz4 and Blosc-blosclz has roughly the same compression ratio.
○ lz4 & blosc are not suitable for large partitions (buffer < 2 GBytes).

● Storage formats
○ Numpy is the best suitable format but you must save the shape and dtype information!
○ If the dataset abstraction is required, Zarr is a good option.
○ If over file quota:

■ Random read: Zarr-zipstore > HDF5 + shuffling & partitioning
■ Sequential read: Numpy + Tar + shuffling & partitioning > Zarr-zipstore ≈ HDF5 +

shuffling & partitioning

29INSTITUT PIERRE-SIMON LAPLACE 29

PerspectivesESPRI-IA

Suggestions:
● Use or implement chunks loading ahead of time (e.g. workers for Pytorch).
● If write overhead is critical, compress offline.
● Make your own application oriented benchmarks!

Experiment notebooks, results in csv and many more plots available at:
https://gitlab.in2p3.fr/ipsl/espri/espri-ia/projects/storage_formats

Compression tutorial notebook at:
https://ipsl.pages.in2p3.fr/formations/jupyter-notebooks-examples/engineering/storage_formats_for_

floats.html

https://gitlab.in2p3.fr/ipsl/espri/espri-ia/projects/storage_formats
https://ipsl.pages.in2p3.fr/formations/jupyter-notebooks-examples/engineering/storage_formats_for_floats.html
https://ipsl.pages.in2p3.fr/formations/jupyter-notebooks-examples/engineering/storage_formats_for_floats.html

30INSTITUT PIERRE-SIMON LAPLACE 30

Storage formats
Q & A

ESPRI-IA

